GT4SD: Generative Toolkit for Scientific Discovery

Matteo Manica, Joris Cadow, Dimitrios Christofidellis, Ashish Dave, Jannis Born, Dean Clarke, Yves Gaetan Nana Teukam, Samuel C. Hoffman, Matthew Buchan, Vijil Chenthamarakshan, Timothy Donovan, Hsiang Han Hsu, Federico Zipoli, Oliver Schilter, Giorgio Giannone, Akihiro Kishimoto, Lisa Hamada, Inkit Padhi, Karl Wehden, Lauren McHugh, Alexy Khrabrov, Payel Das, Seiji Takeda, John R. Smith. 2022

[ArXiv]    

With the growing availability of data within various scientific domains, generative models hold enormous potential to accelerate scientific discovery at every step of the scientific method. Perhaps their most valuable application lies in the speeding up of what has traditionally been the slowest and most challenging step of coming up with a hypothesis. Powerful representations are now being learned from large volumes of data to generate novel hypotheses, which is making a big impact on scientific discovery applications ranging from material design to drug discovery. The GT4SD (https://github.com/GT4SD/gt4sd-core) is an extensible open-source library that enables scientists, developers and researchers to train and use state-of-the-art generative models for hypothesis generation in scientific discovery. GT4SD supports a variety of uses of generative models across material science and drug discovery, including molecule discovery and design based on properties related to target proteins, omic profiles, scaffold distances, binding energies and more.